000 01163nam a22002537a 4500
005 20250328095117.0
008 250319b |||||||| |||| 00| 0 eng d
020 _a9783319775852
040 _aMAIN
082 _a519.6
_bSNY-18
100 _aSnyman, Jan A
245 _aPractical Mathematical Optimization :
_bBasic Optimization Theory and Gradient-Based Algorithms /
_cJan A Snyman, Daniel N Wilke.
250 _a2nd ed
260 _aCham :
_bSpringer,
_c2018
300 _axxvi, 372p.
440 _aSpringer Optimization and Its Applications, 1931-6828 ; 133
500 _a1.Introduction -- 2.Line search descent methods for unconstrained minimization.-3. Standard methods for constrained optimization.-4. Basic Example Problems -- 5. Some Basic Optimization Theorems -- 6. New gradient-based trajectory and approximation methods -- 7. Surrogate Models -- 8. Gradient-only solution strategies -- 9. Practical computational optimization using Python -- Appendix -- Index.
650 _aOptimization.
650 _aAlgorithms.
650 _aMathematical Software.
650 _a Numerical Analysis.
700 _aWilke, Daniel N,
942 _cBK
999 _c22224
_d22224