000 | 01163nam a22002537a 4500 | ||
---|---|---|---|
005 | 20250328095117.0 | ||
008 | 250319b |||||||| |||| 00| 0 eng d | ||
020 | _a9783319775852 | ||
040 | _aMAIN | ||
082 |
_a519.6 _bSNY-18 |
||
100 | _aSnyman, Jan A | ||
245 |
_aPractical Mathematical Optimization : _bBasic Optimization Theory and Gradient-Based Algorithms / _cJan A Snyman, Daniel N Wilke. |
||
250 | _a2nd ed | ||
260 |
_aCham : _bSpringer, _c2018 |
||
300 | _axxvi, 372p. | ||
440 | _aSpringer Optimization and Its Applications, 1931-6828 ; 133 | ||
500 | _a1.Introduction -- 2.Line search descent methods for unconstrained minimization.-3. Standard methods for constrained optimization.-4. Basic Example Problems -- 5. Some Basic Optimization Theorems -- 6. New gradient-based trajectory and approximation methods -- 7. Surrogate Models -- 8. Gradient-only solution strategies -- 9. Practical computational optimization using Python -- Appendix -- Index. | ||
650 | _aOptimization. | ||
650 | _aAlgorithms. | ||
650 | _aMathematical Software. | ||
650 | _a Numerical Analysis. | ||
700 | _aWilke, Daniel N, | ||
942 | _cBK | ||
999 |
_c22224 _d22224 |